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Abstract

Background—The recently developed test-negative design is now standard for observational 

studies of influenza vaccine effectiveness (VE). It is unclear how influenza test misclassification 

biases test-negative VE estimates relative to VE estimates from traditional cohort or case-control 

studies.

Methods—We simulated populations whose members may develop acute respiratory illness 

(ARI) due to influenza and to non-influenza pathogens. In these simulations, vaccination reduces 

the risk of influenza but not of non-influenza ARI. Influenza test sensitivity and specificity, risks 

of influenza and non-influenza ARI, and VE were varied across the simulations. In each 

simulation, we estimated influenza VE using a cohort design, a case-control design, and a test-

negative design.

Results—In the absence of influenza test misclassification, all three designs accurately estimated 

influenza VE. In the presence of misclassification, all three designs underestimated VE. Bias in 

VE estimates was slightly greater in the test-negative design than in cohort or case-control designs. 

Assuming the use of highly sensitive and specific reverse-transcriptase polymerase chain reaction 

tests for influenza, bias in the test-negative studies was trivial across a wide range of realistic 

values for VE.

Discussion—Although influenza test misclassification causes more bias in test-negative studies 

than in traditional cohort or case-control studies, the difference is trivial for realistic combinations 

of attack rates, test sensitivity/specificity, and VE.
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1. Introduction

In recent years, the so-called “test-negative” design has become the standard approach for 

observational studies of influenza vaccine effectiveness (VE) [1–3]. In a test-negative 

design, the study population comprises patients who present to an outpatient clinic or 

hospital with acute respiratory illness (ARI) and who are tested for influenza infection [4]. 

VE is defined as one minus the ratio of the risk of influenza among the vaccinated to the 

corresponding risk among the unvaccinated. In case-control and test-negative studies, VE is 

estimated as one minus the odds ratio of influenza for vaccinated vs. unvaccinated. Relative 

to some other observational designs, the test-negative design offers the advantage of reduced 

confounding from differences in healthcare-seeking behavior between vaccinated and 

unvaccinated persons [5].

Misclassification of influenza leads to biased VE estimates, regardless of the study design. 

Assuming the misclassification is not differential by vaccination status, misclassification 

will introduce bias that will tend to underestimate VE. The degree of bias due to 

misclassification has been believed to be low in test-negative studies, primarily due to a 

2007 paper by Orenstein and colleagues [6]. In that paper, the authors concluded that case-

control and test-negative studies were less biased than cohort studies in populations subject 

to similar amounts of misclassification of influenza. That paper, however, had an important 

flaw. The authors based their calculations on a cumulative design [7] for the case-control and 

test-negative studies, in which the controls are sampled from those who did not get influenza 

during the follow-up period. Controls in a case-control study correspond to the denominator 

information in a cohort study. The cumulative sampling strategy excludes those who get 

influenza from the sampled denominators, biasing study results away from the null [7]; this 

bias is small for rare disease but is larger if the disease is common. In the paper by Orenstein 

et al, the bias toward the null in VE stemming from misclassification of disease was 

countered in the test-negative and case-control design by a bias away from the null due to 

the cumulative design sampling strategy. With no misclassification, a properly designed 

case-control study would give expected results equivalent to those from a cohort study, but 

the cumulative design considered by Oren-stein et al. would not. Thus, the work of 

Orenstein et al. does not allow a valid conclusion about the effects of test sensitivity and 

specificity on VE estimates in test-negative studies.

In this paper, we compare the effects of imperfect test sensitivity and specificity on VE 

estimates from cohort, case-control, and test-negative studies. We correct the problem in the 

paper by Oren-stein et al. by using simulations based on sampling controls from the full 

population at risk (sometimes referred to as “case-cohort sampling”) [7] rather than a 

cumulative design for the case-control and test-negative studies.

2. Methods

To focus on the effects of imperfect sensitivity and specificity, we assumed that other 

sources of bias are absent. Specifically, we assumed that there is no confounding, no 

selection bias, and no misclassification of exposure (vaccination) status. We simulated 

populations at risk for two outcomes: medically attended influenza infection and medically 
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attended infection with other pathogens. We assumed infection with influenza to be 

independent from infection with other pathogens. We also assumed that subjects could only 

be infected once with influenza, but could be infected multiple times with non-influenza 

pathogens. Our simulation involves five parameters (Table 1):

VE = influenza vaccine effectiveness against medically attended influenza

IPflu = incidence proportion (risk) of influenza ARI in unvaccinated persons

IPother = incidence proportion of ARI due to non-influenza pathogens

sens = sensitivity of influenza test

spec = specificity of influenza test

For consistency with Orenstein et al., we performed one set of “young children” simulations, 

in which we assumed that IPflu = 15%, IPother = 30%, and VE = 70%, based on expected 

incidence and VE in children 6–24 months of age [6]. We also performed a set of “all ages” 

simulations assuming IPflu = 5%, IPother = 10%, and VE = 50%, which are more realistic 

values for the population of all ages that is a frequent target of test-negative VE studies. 

Following Oren-stein et al., we assumed influenza test sensitivity to be 0.8 and specificity to 

be 0.9. These values were based on the use of rapid antigen tests for detecting influenza. In 

practice, nearly all modern studies use reverse-transcriptase polymerase chain reaction (RT-

PCR) assays for influenza testing, which are both more sensitive and more specific than 

rapid antigen tests [8–10]. We therefore repeated our analyses using sensitivity and 

specificity parameters based on RT-PCR (Table 1).

We ran a series of 1000 simulations to compare the study designs. In each, we simulated a 

population of 50,000 subjects, which gives study sizes roughly equal to those in existing 

observational VE studies [1,3,11]. We assumed that 40% of subjects received influenza 

vaccine at the start of follow-up. Within the follow-up period, subjects could be infected (up 

to once) with influenza, with risk equal to IPflu, and infected (up to once) with a non-

influenza pathogen, with risk equal to IPother. We assumed that risk of influenza is 

independent of the risk of non-influenza ARI, as analyses of the effects of hypothetical non-

independence on test-negative VE estimates have been performed previously [12]. After 

running the simulation to determine the simulated disease events, we randomly allowed 

these simulated events to be misclassified according to the rapid test and RT-PCR values for 

sensitivity and specificity.

We estimated VE using three separate designs, first using the correctly classified outcomes. 

In the cohort design, we calculated the risk of influenza infection in the vaccinated and the 

unvaccinated. We then estimated VEcohort as (1 − RR), where RR is the risk ratio. In the 

case-control design, for each detected influenza case, we randomly sampled three controls 

from the total study population. We estimated VEcc as (1 − ORcc), where ORcc is the odds 

ratio from the case-control study, which estimates the risk ratio [7]. For the test-negative 

design, we included all ARI events testing positive for influenza as cases. All ARI events 

testing negative for influenza were selected as a comparison group. We estimated VEtn as (1 
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− ORtn), where ORtn is the odds ratio from the test-negative study. We calculated 95% 

confidence limits from the 2.5th and 97.5th percentiles of the simulations.

After estimating VE in the simulated population based on the true disease status, we 

repeated the analysis using the rapid test misclassified outcomes, and again using the RT-

PCR misclassified outcomes. We calculated the bias of each design from each simulation as 

a percent: Bias = [(VE/VE) − 1] × 100 %. For each design at each level of misclassification, we 

calculated the mean bias with 95% confidence limits.

We further assessed the independent effects of influenza test sensitivity and test specificity 

on VE estimates in the test-negative design, using the “all ages” scenario. For this, we ran 

1000 simulations assuming IPflu = 5%, IPother = 10%, and VE = 50%. In each simulated 

population, we calculated VEtn at a range of test sensitivities (from 0.8 to 1.0, keeping 

specificity at 1.0) and at a range of specificities (from 0.8 to 1.0, holding sensitivity at 1.0). 

Finally, we assessed the degree to which bias in the cohort and test-negative designs varies 

with varying VE. For this, we ran 1000 simulations, assuming PCR sensitivity and 

specificity, IPflu = 5%, and IPother = 10%, while varying VE between 10 and 70%.

Finally, we conducted sensitivity analyses of the “young children” and “all ages” scenarios, 

where we allowed subjects to have multiple influenza and non-influenza ARI events during 

follow-up. Instead of incidence proportions, the number of events per person was randomly 

sampled from a Poisson distribution with mean equal to IPflu (for influenza ARI) and IPother 

(for non-influenza ARI). Results were trivially different from the main analyses for all study 

designs in both scenarios (less than one percentage point difference in estimated VE at PCR 

levels of misclassification) and are not further presented here. Analyses were conducted 

using SAS Version 9.3 (SAS Institute, Cary NC) and R Version 3.0.2 (The R Foundation for 

Statistical Computing, Vienna, Austria).

3. Results

In the absence of misclassification, all three designs accurately estimated VE in the “young 

children” scenario, with mean VE across the simulations of 70% (Table 2). In the presence of 

misclassification at the level of RT-PCR tests, all three designs slightly underestimated VE 

(mean bias = −6% for cohort and case-control and −7% for test negative). Underestimation 

of VE was more pronounced in the presence of rapid test misclassification, and this 

underestimation was greater in the test-negative design (mean bias = −26%) compared with 

the case-control and cohort designs (mean bias = −20% for each).

Similar results were seen in the “all ages” scenario where true VE was 50%, with mean VE
across the simulations of 50% in the absence of outcome misclassification (Table 3). 

Underestimation of VE was slight in the presence of RT-PCR misclassification (−6% for 

cohort and case-control, −8% for test-negative) and more pronounced in the presence of 

rapid test misclassification (−20% for cohort and case-control and −26% for test-negative).

In the test-negative design, low specificity caused greater bias in VE estimates than did low 

sensitivity. Assuming true VE of 50%, in simulations holding specificity constant at 1.0, 

VEtn ranged from 50% when sensitivity was 1.0 to 48% when sensitivity was 0.8 (Fig. 1). In 
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simulations holding sensitivity constant at 1.0, VEtn ranged from 50% when specificity was 

1.0 to 36% when specificity was 0.8.

When using RT-PCR for diagnosing influenza, the difference in mean VE between cohort 

and test-negative designs was trivial across a wide range of VE values (Fig. 2); VE from the 

test-negative design tended to be one percentage point lower than VE from the cohort design.

4. Discussion

Although first introduced in 1980 [13], the test-negative design was little used until it began 

to be applied to influenza vaccine studies less than 10 years ago [14]. Much remains 

unknown about the relative impact of potential biases on VE estimates from test-negative 

studies. One source of bias is misclassification of disease status due to the imperfect 

sensitivity and specificity of influenza tests. A priori, we would expect disease 

misclassification to cause greater bias in a test-negative study than in a cohort or a case-

control study. In the cohort and case-control designs, persons falsely testing positive only 

contribute to the study in proportion to the rate of false positive tests in the entire population, 

which is a product of test specificity and incidence of non-influenza ARI. In contrast, in the 

test-negative design, persons falsely testing negative contribute to the study in proportion to 

the rate of false positive tests among persons with non-influenza ARI. Our findings con-firm 

this expectation: in the presence of disease misclassification, VE estimates from the test-

negative design are more biased than VE estimates from case-control or cohort designs. 

However, when highly sensitive and specific tests such as RT-PCR are used, the difference in 

bias between these designs is small and does not lead to meaningful differences in estimated 

VE between study designs.

We found that imperfect specificity of influenza testing caused greater bias in the test-

negative design than did imperfect sensitivity. This finding agrees with the expected effects 

of imperfect sensitivity and specificity of traditional case-control studies [15]. In selecting 

influenza tests for test-negative studies, high specificity is much more important than high 

sensitivity for avoiding bias. For individual test results that are inconclusive (such as RT-

PCR results with high cycle times), erring on the side of considering these to be negative 

results is expected to cause less bias than considering these to be positive.

Multiple influenza types or subtypes can co-circulate in a given season, and therefore people 

may remain at risk for a second influenza infection within a single season even after being 

infected. In such settings, an individual who was previously infected with influenza is still at 

risk for influenza and should still be eligible to be sampled into the control group of a case-

control study, including the test-negative group in a test-negative case-control study. 

Sampling subjects into the control group if they have previously had influenza may bias VE 

estimates if sampling of such subjects is associated with vaccine status. Our primary 

simulation analysis assumed that only one influenza infection occurred, and did not address 

this potential bias.

Although most commonly used for influenza VE studies, the test-negative design has also 

been used for rotavirus VE studies, with subjects being children with diarrheal illness (e.g., 
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[16,17]). Enzyme immunoassay tests for rotavirus have sensitivities of 75–80% and 

specificities of 98% or more [18,19]. Rotavirus test-negative studies have found positive 

rotavirus tests for 11–17% of subjects tested [16,17]. Given the high proportion of subjects 

with diarrhea due to non-rotavirus causes, test specificity will be more important than 

sensitivity for causing biased rotavirus VE estimates. Given the high specificity of rotavirus 

tests, our results suggest that rotavirus VE estimates from test-negative designs will also not 

be meaningfully biased relative to VE estimates from other designs in the presence of 

imperfect diagnostic tests.

Several limitations of our study are worth considering. We assumed that misclassification 

was non-differential by vaccination status, i.e., that the accuracy of influenza test results was 

not affected by vaccination. Serologic testing for influenza infection has been shown to have 

reduced sensitivity in vaccinated persons, but data are less clear for RT-PCR [20]. Our 

results will not hold true if sensitivity or specificity is differential by vaccination status. We 

also assumed that influenza test results (either correct or misclassified) are known for all 

persons with ARI, and that patients with prior influenza infection can be excluded from the 

study population. In practice, potential study subjects may have had prior ARI that was not 

tested for influenza, and so persons with prior influenza infection may continue to contribute 

person time (in a cohort study) or be included as controls (in a case-control or test-negative 

study). The degree to which this phenomenon may bias VE results is uncertain, and the issue 

is further complicated by the possibility that persons may be infected with influenza multiple 

times during a single season (from infection with different virus types or subtypes). Finally, 

we did not examine the effect of other sources of bias, including selection bias, inaccurate 

exposure measurement, or confounding.

5. Conclusions

Influenza VE estimates from test-negative studies are biased in the presence of outcome 

misclassification, and this bias is greater than in corresponding VE estimates from cohort or 

case-control studies. However, the relative increase in bias is slight when using RT-PCR for 

diagnosing influenza. Given that observational studies of influenza VE can be dramatically 

confounded by differences in care-seeking and disease risk between vaccinated and 

unvaccinated persons [21,22], the gains in control of confounding by use of the test-negative 

design are likely to outweigh the bias due to misclassification.
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Fig. 1. 
Mean estimated influenza vaccine effectiveness (VE) from 1000 simulations of a test-

negative study at different cut-points of influenza test sensitivity (open circles) and 

specificity (filled circles), assuming true VE of 50% (dashed line).
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Fig. 2. 
Mean estimated influenza vaccine effectiveness (VE) from 1000 simulations of a cohort 

study (open circles) and a test-negative (filled circles) study at different values of true VE 

assuming RT-PCR sensitivity and specificity; the dashed line shows perfect agreement 

between true and estimated VE.

Jackson and Rothman Page 9

Vaccine. Author manuscript; available in PMC 2018 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jackson and Rothman Page 10

Table 1

Parameter values for simulations.

Parameter Description Values

All ages Young children

VEtrue Vaccine effectiveness 50% 70%

IPflu Incidence proportion of ARI* due to influenza 5% 15%

IPother Incidence proportion of ARI due to other pathogens 10% 30%

Sens (RT) Rapid test sensitivity 80%

Spec (RT) Rapid test specificity 90%

Sens (PCR) RT-PCR sensitivity 95%

Spec (PCR) RT-PCR specificity 97%

*
ARI = acute respiratory illness.
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Table 2

Estimated vaccine effectiveness (VE) and bias from 1000 “young children” simulations under different study 

designs and levels of misclassification, assuming 70% VE.

Design Misclassification Estimated VE Percent bias

Cohort None 70% (68–72%) 0%

Cohort RT-PCR 66% (63–68%) −6%

Cohort Rapid test 56% (53–58%) −20%

Case-control None 70% (68–72%) 0%

Case-control RT-PCR 66% (63–68%) −6%

Case-control Rapid test 56% (53–58%) −20%

Test-negative None 70% (68–72%) 0%

Test-negative RT-PCR 65% (63–68%) −7%

Test-negative Rapid test 53% (50–56%) −24%
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Table 3

Estimated vaccine effectiveness (VE) and bias from 1000 “all ages” simulations under different study designs 

and levels of misclassification, assuming 50% VE.

Design Misclassification Estimated VE Percent bias

Cohort None 50% (45–55%) 0%

Cohort RT-PCR 47% (42–52%) −6%

Cohort Rapid test 40% (34–45%) −20%

Case-control None 50% (44–55%) 0%

Case-control RT-PCR 47% (40–52%) −6%

Case-control Rapid test 40% (33–46%) −20%

Test-negative None 50% (44–55%) 0%

Test-negative RT-PCR 46% (39–52%) −8%

Test-negative Rapid test 37% (29–43%) −26%
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